niftycent.com
NiftyCent
DE
Login
  • 🏠 Startseite
  • 📦 Marktplatz
    • Rabatte
Marktplatz
Rabatte
Startseite » Gruppen » Louis Serano » Tomas_r2's beiträge » GRPO - Group Relative Policy Optimization - How DeepSeek trains reasoning models

GRPO - Group Relative Policy Optimization - How DeepSeek trains reasoning models

Erstellt 9h | 08.05.2025, 14:20:03


Melden Sie sich an, um einen Kommentar hinzuzufügen

Andere Beiträge in dieser Gruppe

Josh Starmer and Luis Serrano Live Q/A from Uphill at Bern!
Josh Starmer and Luis Serrano Live Q/A from Uphill at Bern!
Josh Starmer and Luis Serrano Live Q/A from Uphill at Bern!
24.04.2025, 20:50:07 | Louis Serano
Discrete Dynamical Systems - Eigenvalues and Eigenvectors
Discrete Dynamical Systems - Eigenvalues and Eigenvectors
31.03.2025, 15:10:09 | Louis Serano
Mean, Variance, Skewness, and Kurtosis - Math for ML with Deeplearning.ai
Mean, Variance, Skewness, and Kurtosis - Math for ML with Deeplearning.ai
12.03.2025, 19:10:11 | Louis Serano
The three steps to make a reliable chatbot: Preamble, Fine-tuning, and RAG
The three steps to make a reliable chatbot: Preamble, Fine-tuning, and RAG
11.03.2025, 17:30:02 | Louis Serano
Newton's method for approximating zeros of polynomials - Math for ML with Deeplearning.ai
Newton's method for approximating zeros of polynomials - Math for ML with Deeplearning.ai
05.03.2025, 15:20:03 | Louis Serano
The Stone-Weierstrass Theorem - How to approximate functions
The Stone-Weierstrass Theorem - How to approximate functions
25.02.2025, 17:10:03 | Louis Serano
Keys, Queries, and Values: The celestial mechanics of attention
Keys, Queries, and Values: The celestial mechanics of attention
18.02.2025, 15:50:09 | Louis Serano
Tomas_r2
Tomas_r2




Nutzungsbedingungen
Hersteller
Neuen Shop hinzufügen


Firmen
Wir verwenden Cookies

Eshop info
Preisliste
Kontakt
Ausführung: v38.94