Show HN: Improving RAG with chess Elo scores

Hello HN,

I'm Ghita, co-founder of ZeroEntropy (YC W25). We build high accuracy search infrastructure for RAG and AI Agents.

We just released two new state-of-the-art rerankers zerank-1, and zerank-1-small. One of them is fully open-source under Apache 2.0.

We trained those models using a novel Elo score inspired pipeline which we describe in detail in the blog attached. In a nutshell, here is an outline of the training steps: * Collect soft preferences between pairs of documents using an ensemble of LLMs. * Fit an ELO-style rating system (Bradley-Terry) to turn pairwise comparisons into absolute per-document scores. * Normalize relevance scores across queries using a bias correction step, modeled using cross-query comparisons and solved with MLE.

You can try the models either through our API (https://docs.zeroentropy.dev/models), or via HuggingFace (https://huggingface.co/zeroentropy/zerank-1-small).

We would love this community's feedback on the models, and the training approach. A full technical report is also going to be released soon.

Thank you!


Comments URL: https://news.ycombinator.com/item?id=44582662

Points: 30

# Comments: 5

https://www.zeroentropy.dev/blog/improving-rag-with-elo-scores

Created 1d | Jul 16, 2025, 4:10:09 PM


Login to add comment