An aerospace engineer explains how hypersonic missiles work

Russia used a hypersonic missile against a Ukrainian arms depot in the western part of the country on March 18, 2022. That might sound scary, but the technology the Russians used is not particularly advanced. However, next-generation hypersonic missiles that Russia, China, and the U.S. are developing do pose a significant threat to national and global security. I am an aerospace engineer who studies space and defense systems, including hypersonic systems. These new systems pose an important challenge due to their maneuverability all along their trajectory. Because their flight paths can change as they travel, these missiles must be tracked throughout their flight. A second important challenge stems from the fact that they operate in a different region of the atmosphere from other existing threats. The new hypersonic weapons fly much higher than slower subsonic missiles but much lower than intercontinental ballistic missiles. The U.S. and its allies do not have good tracking coverage for this in-between region, nor does Russia or China. Destabilizing effect Russia has claimed that some of its hypersonic weapons can carry a nuclear warhead. This statement alone is a cause for concern whether or not it is true. If Russia ever operates this system against an enemy, that country would have to decide the probability of the weapon being conventional or nuclear.

In the case of the U.S., if the determination were made that the weapon was nuclear, then there is a very high likelihood that the U.S. would consider this a first strike attack and respond by unloading its nuclear weapons on Russia. The hypersonic speed of these weapons increases the precariousness of the situation because the time for any last-minute diplomatic resolution would be severely reduced. It is the destabilizing influence that modern hypersonic missiles represent that is perhaps the greatest risk they pose. I believe the U.S. and its allies should rapidly field their own hypersonic weapons to bring other nations such as Russia and China to the negotiating table to develop a diplomatic approach to managing these weapons. What is hypersonic? Describing a vehicle as hypersonic means that it flies much faster than the speed of sound, which is 761 miles per hour (1,225 kilometers per hour) at sea level and 663 mph (1,067 kph) at 35,000 feet (10,668 meters) where passenger jets fly. Passenger jets travel at just under 600 mph (966 kph), whereas hypersonic systems operate at speeds of 3,500 mph (5,633 kph)—about 1 mile (1.6 kilometers) per second—and higher. Hypersonic systems have been in use for decades. In 1962, when John Glenn returned from the first U.S. crewed flight around the Earth, his capsule entered the atmosphere at hypersonic speed. All of the intercontinental ballistic missiles in the world’s nuclear arsenals are hypersonic, reaching about 15,000 mph (24,140 kph), or about 4 miles (6.4 km) per second at their maximum velocity. ICBMs are launched on large rockets and then fly on a predictable trajectory that takes them out of the atmosphere into space and then back into the atmosphere again. The new generation of hypersonic missiles fly very fast, but not as fast as ICBMs. They are launched on smaller rockets that keep them within the upper reaches of the atmosphere. Three types of hypersonic missiles There are three different types of non-ICBM hypersonic weapons: aeroballistic, glide vehicles, and cruise missiles. A hypersonic aeroballistic system is dropped from an aircraft, accelerated to hypersonic speed using a rocket, and then follows a ballistic, meaning unpowered, trajectory. The system Russian forces used to attack Ukraine, the Kinzhal, is an aeroballistic missile. The technology has been around since about 1980. A hypersonic glide vehicle is boosted on a rocket to high altitude and then glides to its target, maneuvering along the way. Examples of hypersonic glide vehicles include China’s Dongfeng-17, Russia’s Avangard and the U.S. Navy’s Conventional Prompt Strike system. U.S. officials have expressed concern that China’s hypersonic glide vehicle technology is further advanced than the U.S. system. A hypersonic cruise missile is boosted by a rocket to hypersonic speed and then uses an air-breathing engine called a scramjet to sustain that speed. Because they ingest air into their engines, hypersonic cruise missiles require smaller launch rockets than hypersonic glide vehicles, which means they can cost less and be launched from more places. Hypersonic cruise missiles are under development by China and the U.S. The U.S. reportedly conducted a test flight of a scramjet hypersonic missile in March 2020. Difficult to defend against The primary reason nations are developing these next-generation hypersonic weapons is how difficult they are to defend against due to their speed, maneuverability, and flight path. The U.S. is starting to develop a layered approach to defending against hypersonic weapons that includes a constellation of sensors in space and close cooperation with key allies. This approach is likely to be very expensive and take many years to implement. With all of this activity on hypersonic weapons and defending against them, it is important to assess the threat they pose to national security. Hypersonic missiles with conventional, nonnuclear warheads are primarily useful against high-value targets, such as an aircraft carrier. Being able to take out such a target could have a significant impact on the outcome of a major conflict. However, hypersonic missiles are expensive and therefore not likely to be produced in large quantities. As seen in the recent use by Russia, hypersonic weapons are not necessarily a silver bullet that ends a conflict.

Iain Boyd is a professor of aerospace engineering sciences at the University of Colorado, Boulder.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

https://www.fastcompany.com/90741658/an-aerospace-engineer-explains-how-hypersonic-missiles-work?partner=rss&utm_source=rss&utm_medium=feed&utm_campaign=rss+fastcompany&utm_content=rss

Létrehozva 3y | 2022. ápr. 17. 14:21:01


Jelentkezéshez jelentkezzen be

EGYÉB POSTS Ebben a csoportban

Why the AI pin won’t be the next iPhone

One of the most frequent questions I’ve been getting from business execs lately is whether the

2025. júl. 12. 12:10:02 | Fast company - tech
Microsoft will soon delete your Authenticator passwords. Here are 3 password manager alternatives

Users of Microsoft apps are having a rough year. First, in May, the Windows maker

2025. júl. 12. 9:40:03 | Fast company - tech
Yahoo Creators platform hits record revenue as publisher bets big on influencer-led content

Yahoo’s bet on creator-led content appears to be paying off. Yahoo Creators, the media company’s publishing platform for creators, had its most lucrative month yet in June.

Launched in M

2025. júl. 11. 17:30:04 | Fast company - tech
GameStop’s Nintendo Switch 2 stapler sells for more than $100,000 on eBay after viral mishap

From being the face of memestock mania to going viral for inadvertently stapling the screens of brand-new video game consoles, GameStop is no stranger to infamy.

Last month, during the m

2025. júl. 11. 12:50:04 | Fast company - tech
Don’t take the race for ‘superintelligence’ too seriously

The technology industry has always adored its improbably audacious goals and their associated buzzwords. Meta CEO Mark Zuckerberg is among the most enamored. After all, the name “Meta” is the resi

2025. júl. 11. 12:50:02 | Fast company - tech
Why AI-powered hiring may create legal headaches

Even as AI becomes a common workplace tool, its use in

2025. júl. 11. 12:50:02 | Fast company - tech
Gen Zers are posting their unemployment era on TikTok—and it’s way too real

Finding a job is hard right now. To cope, Gen Zers are documenting the reality of unemployment in 2025.

“You look sadder,” one TikTok po

2025. júl. 11. 10:30:04 | Fast company - tech